Fuzzy Logic Based Industrial Control System Design

Abstract

Fuzzy logic controller is an alternative modern control system that is easy because it does not need to look for a mathematical model of a system, but still effective because it has a stable response. The training module that has been designed using a DC servo motor and heater is controlled by an 89S52 microcontroller and the method of regulation used is fuzzy logic with a supervisory system using MMI software. The system created is a minimal system from SCADA because there is only one PC that is a data client. Fuzzy logic is designed to have two inputs (Err and ΔErr) and one output (Δton). Each membership function has 5 labels. Here used 25 fuzzy if-then rules consisting of 9 main rules, 10 additional rules and 6 supplementary rules. While the fuzzy logic process consists of fuzzyfication, evaluation rules, and defuzzyfication. The motor driver (motor driver) uses a PWM system (pulse width modulation) and the heater driver uses a proportional power control system. Input point setting is done through the SCADA software that is sent to the microcontroller via the computer's RS232 serial port. The system response testing is carried out on a number of setting point variations and load variations. From the data obtained shows that the system response is quite fast in pursuing the setting point value both in various variations, namely the load and setting point. Fuzzy logic is one of the redundant or fault tolerant control systems, which means the fuzzy logic controller can still work with a reduction in some rules, or if there are small errors in programming, without any significant changes.

Keywords

Scada, fuzzy, serial port, RS232, DC Servo, microcontroller

References

  • [1] I. Iswanto, O. Wahyunggoro, and A. Imam Cahyadi, “Path Planning Based on Fuzzy Decision Trees and Potential Field,” Int. J. Electr. Comput. Eng., vol. 6, no. 1, p. 212, Feb. 2016.
  • [2] I. Iswanto, O. Wahyunggoro, and A. Imam Cahyadi, “Hover Position of Quadrotor Based on PD-like Fuzzy Linear Programming,” Int. J. Electr. Comput. Eng., vol. 6, no. 5, p. 2251, Oct. 2016.
  • [3] I. Iswanto, A. Ataka, R. Inovan, O. Wahyunggoro, and A. Imam Cahyadi, “Disturbance Rejection for Quadrotor Attitude Control Based on PD and Fuzzy Logic Algorithm,” Int. Rev. Autom. Control, vol. 9, no. 6, p. 405, Nov. 2016.
  • [4] I. Iswanto, W. S. Agustiningsih, F. Mujaahid, R. Rohmansyah, and A. Budiman, “Accumulator Charging Control with Piezoelectric Based on Fuzzy Algorithm Scheduling,” TELKOMNIKA (Telecommunication Comput. Electron. Control., vol. 16, no. 2, p. 635, Apr. 2018.
  • [5] R. Mubarok, D. Verdy Firmansyah, D. Haryanto, N. Pratama Apriyanto, U. Mahmudah, and I. Iswanto, “Motorcycle-Security using Position Searching Algorithm Based on Hybrid Fuzzy-Dijkstra,” Indones. J. Electr. Eng. Comput. Sci., vol. 3, no. 2, p. 468, Aug. 2016.
  • [6] I. Iswanto, K. Purwanto, W. Hastuti, A. Prabowo, and M. Y. Mustar, “Smart Smoking Area based on Fuzzy Decision Tree Algorithm,” Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 6, pp. 500–504, 2019.
  • [7] I. Iswanto, O. Wahyunggoro, and A. Imam Cahyadi, “Quadrotor Path Planning Based on Modified Fuzzy Cell Decomposition Algorithm,” TELKOMNIKA (Telecommunication Comput. Electron. Control., vol. 14, no. 2, p. 655, Jun. 2016.
  • [8] Iswanto, O. Wahyunggoro, and A. I. Cahyadi, “Trajectory and altitude controls for autonomous hover of a quadrotor based on fuzzy algorithm,” in 2016 8th International Conference on Information Technology and Electrical Engineering (ICITEE), 2016, pp. 1–6.
  • [9] Iswanto, O. Wahyunggoro, and A. I. Cahyadi, “Path planning of decentralized multi-quadrotor based on fuzzy-cell decomposition algorithm,” in AIP Conference Proceedings, 2017, vol. 1831, p. 020060.
  • [10] N. M. Raharja, Iswanto, M. Faris, and A. I. Cahyadi, “Hover position quadrotor control with fuzzy logic,” in 2014 The 1st International Conference on Information Technology, Computer, and Electrical Engineering, 2014, pp. 89–92.
  • [11] T. Padang Tunggal, A. Supriyanto, N. M. Zaidatur Rochman, I. Faishal, I. Pambudi, and I. Iswanto, “Pursuit Algorithm for Robot Trash Can Based on Fuzzy-Cell Decomposition,” Int. J. Electr. Comput. Eng., vol. 6, no. 6, p. 2863, Dec. 2016.
  • [12] N. M. Raharja, Iswanto, O. Wahyunggoro, and A. I. Cahyadi, “Altitude control for quadrotor with mamdani fuzzy model,” in 2015 International Conference on Science in Information Technology (ICSITech), 2015, pp. 309–314.
  • [13] N. M. Raharja, E. Firmansyah, A. I. Cahyadi, and Iswanto, “Hovering control of quadrotor based on fuzzy logic,” Int. J. Power Electron. Drive Syst., vol. 8, no. 1, 2017.
  • [14] I. Iswanto, O. Wahyunggoro, and A. I. Cahyadi, “Formation Pattern Based on Modified Cell Decomposition Algorithm,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 7, no. 3, p. 829, Jun. 2017.
  • [15] A. N. N. Chamim, M. E. Fawzi, I. Iswanto, R. O. Wiyagi, and R. Syahputra, “Control of Wheeled Robots with Bluetooth-Based Smartphones,” Int. J. Recent Technol. Eng., vol. 8, no. 2, pp. 6244–6247, Jul. 2019.
  • [16] A. N. N. Chamim, M. Heru Gustaman, N. M. Raharja, and I. Iswanto, “Uninterruptable Power Supply based on Switching Regulator and Modified Sine Wave,” Int. J. Electr. Comput. Eng., vol. 7, no. 3, p. 1161, Jun. 2017.
  • [17] A. N. N. Chamim, D. Ahmadi, and Iswanto, “Atmega16 Implementation As Indicators Of Maximum Speed,” Int. J. Appl. Eng. Res., vol. 11, no. 15, pp. 8432–8435, Jun. 2016.
  • [18] Iswanto, S. Suripto, F. Mujahid, K. T. Putra, N. P. Apriyanto, and Y. Apriani, “Energy Harvesting on Footsteps Using Piezoelectric based on Circuit LCT3588 and Boost up Converter,” Int. J. Electr. Comput. Eng., vol. 8, no. 6, 2018.
  • [19] K. Purwanto, Iswanto, T. K. Hariadi, and M. Y. Muhtar, “Microcontroller-based RFID, GSM and GPS for motorcycle security system,” Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 3, 2019.
  • [20] Iswanto, P. Megantoro, and D. V. Senzas, “Calibrator for Temperature Measurement Device with Raspberry Pi-Based Interface,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 12, pp. 4862–4866, 2019.
  • [21] D. Hardiyanto, I. Iswanto, D. A. Sartika, and M. Rojali, “Pedestrian Crossing Safety System at Traffic Lights based on Decision Tree Algorithm,” Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 8, pp. 375–379, 2019.
  • [22] Iswanto, J. Syaftriadi, A. Nur, N. Chamim, R. O. Wiyagi, and R. Syahputra, “LED and Servo Motor Control Via Bluetooth Based on Android Applications,” Int. J. Recent Technol. Eng., vol. 8, no. 2, pp. 6227–6231, Jul. 2019.
  • [23] A. Maarif, S. Iskandar, and I. Iswanto, “New Design of Line Maze Solving Robot with Speed Controller and Short Path Finder Algorithm,” Int. Rev. Autom. Control, vol. 12, no. 3, p. 154, May 2019.
  • [24] Iswanto, O. Wahyunggoro, and A. I. Cahyadi, “3D object modeling using data fusion from laser sensor on quadrotor,” in AIP Conference Proceedings, 2016, vol. 1755, p. 170001.
  • [25] P. Ananto, M. Saifussalam, R. Inovan, Iswanto, and A. I. Cahyadi, “Coverage control on multi-agent system,” in 2016 6th International Annual Engineering Seminar (InAES), 2016, pp. 37–41.
  • [26] T. P. Tunggal, A. Latif, and Iswanto, “Low-cost portable heart rate monitoring based on photoplethysmography and decision tree,” in AIP Conference Proceedings, 2016, vol. 1755, p. 090004.
  • [27] H. H. Triharminto, O. Wahyunggoro, T. B. Adji, A. Cahyadi, I. Ardiyanto, and Iswanto, “Local information using stereo camera in artificial potential field based path planning,” IAENG Int. J. Comput. Sci., vol. 44, no. 3, pp. 316–326, 2017.
  • [28] I. Iswanto, “Ar-Drone Navigation Based on Laser Sensor and Potential Field Algorithm,” Int. Rev. Aerosp. Eng., vol. 11, no. 6, p. 260, Sep. 2018.
  • [29] I. Iswanto, “Avoiding Local Minima for Path Planning Quadrotor Based on Modified Potential Field,” Int. Rev. Aerosp. Eng., vol. 11, no. 4, p. 146, Aug. 2018.
  • [30] Iswanto, A. Maarif, O. Wahyunggoro, and A. I. Cahyadi, “Artificial Potential Field Algorithm Implementation for Quadrotor Path Planning,” Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 8, pp. 575–585, 2019.
  • [31] A. Maarif, A. I. Cahyadi, S. Herdjunanto, Iswanto, and Y. Yamamoto, “Tracking control of higher order reference signal using integrators and state feedback,” IAENG Int. J. Comput. Sci., vol. 46, no. 2, 2019.
  • [32] T. P. Tunggal, A. W. Apriandi, J. E. Poetro, E. T. Helmy, and F. Waseel, “Prototype of Hand Dryer with Ultraviolet Light Using ATMega8,” J. Robot. Control, vol. 1, no. 1, pp. 7–10, 2020.
  • [33] P. Megantoro, A. Widjanarko, R. Rahim, K. Kunal, and A. Z. Arfianto, “The Design of Digital Liquid Density Meter Based on Arduino,” J. Robot. Control, vol. 1, no. 1, pp. 1–6, 2020.
  • [34] N. H. Wijaya, A. G. Alvian, A. Z. Arfianto, J. E. Poetro, and F. Waseel, “Data Storage Based Heart and Body Temperature Measurement Device,” J. Robot. Control, vol. 1, no. 1, pp. 11–14, 2020.
  • [35] A. Latif, K. Shankar, P. T. Nguyen, U. Islam, and S. Agung, “Legged Fire Fighter Robot Movement Using PID 1,” J. Robot. Control, vol. 1, no. 1, pp. 15–19, 2020.
  • [36] N. H. Wijaya, Z. Oktavihandani, K. Kunal, E. T. Helmy, and P. T. Nguyen, “Tympani Thermometer Design Using Passive Infrared Sensor,” J. Robot. Control, vol. 1, no. 1, pp. 27–30, 2020.
  • [37] Z. Dzulfikri, N. St, M. Sc, I. Y. Erdani, and M. Sc, “Design and Implementation of Artificial Neural Networks to Predict Wind Directions on Controlling Yaw of Wind Turbine Prototype,” J. Robot. Control, vol. 1, no. 1, pp. 20–26, 2020.
  • [38] K. Kunal, A. Z. Arfianto, J. E. Poetro, F. Waseel, and R. A. Atmoko, “Accelerometer Implementation as Feedback on 5 Degree of Freedom Arm Robot,” J. Robot. Control, vol. 1, no. 1, pp. 31–34, 2020.

DOI : https://doi.org/10.32698/GCS-PSSHERS382