Item response theory approach in the preparation of instruments for identification of mathematics learning difficulties


The difficulty of learning mathematics can be experienced by anyone, from elementary school students to students in college. Difficulty learning mathematics in students if not detected early will have a special detrimental impact on Primary teacher students who will later become teachers in elementary school. Basic mathematics is a basic competency that must be mastered for Primary teacher students. In fact, in the field, there are still many Primary teacher students who have difficulty learning mathematics, especially basic mathematics. However, research on the instrument identification test of the difficulty of learning mathematics in students in basic mathematics courses is still very little especially with the approach of item response theory. Some studies still use the classic theory that is sample bound. The purpose of this study is to (1) describing the multiple-choice test instruments with the three-parameter model item response theory approach and (2) analyzing whether the instrument test multiple choice with the IRT 3PL theory approach can identify the difficulty of learning the mathematics of Primary teacher students in basic mathematics courses. The research method used is quantitative research and development (R&D) with a total of 250 Primary teacher students at a private university in Tangerang. The results showed multiple-choice test instruments with the IRT 3PL approach can identify students who have difficulty learning mathematics in basic mathematics courses.


Item response theory, mathematics learning difficulties, instruments identification


  • M. J. Aftab, T. M. Khan, and T. Hussain, “Validation of Screening Checklist for Learning Difficulties in Mathematics,” Bull. Educ. Res., vol. 39, no. 2, pp. 119–126, 2017.
  • R. Reid and T. O. Lienemann, Strategy Instruction for students with learning disabilities. New York: The Guilford Press, 2006.
  • J. Lithner, “University Mathematics Students’ Learning Difficulties,” Educ. Inq., vol. 2, no. 2, pp. 289–303, Jun. 2011, doi: 10.3402/edui.v2i2.21981.
  • N. Soares, T. Evans, and D. R. Patel, “Specific learning disability in mathematics : a comprehensive review,” Transl. Pediatr., vol. 7, no. 1, pp. 48–62, Jan. 2018, doi: 10.21037/tp.2017.08.03.
  • D. Penesetti, “What Is Specific Learning Disorder?,” American Psychiatric Association, 2018. (accessed Nov. 13, 2020).
  • E. M. Yeni, “Kesulitan Belajar Matematika Di Sekolah Dasar,” JUPENDAS, vol. 2, no. 2, pp. 1–10, 2015.
  • E. Rosita, “Diagnosis kesulitan belajar,” Univ. Negeri Yogyakarta, vol. I, no. 09403241034, pp. 19–26, 2010.
  • P. Westwood, What teachers need to know about: Learning difficulties. Victoria: ACER Press, 2008.
  • P. Westwood, Commonsense Methods for Children with Special Needs, Sixth. New York: Routledge, 2015.
  • S. T. Kane, S. Roy, and S. Medina, “Identifying College Students At-Risk for Learning Disabilities: Evidence for Use of the Learning Difficulties Assessment in Postsecondary Settings,” J. Postsecond. Educ. Disabil., vol. 26, no. 1, pp. 21–33, 2013.
  • S. Klymchuk, T. Zverkova, N. Gruenwald, and G. Sauerbier, “University Students’ Difficulties in Solving Application Problems in Calculus,” Math. Educ. Res. J., vol. 22, no. 1, pp. 81–91, 2010, doi: 10.1007/BF03217567.
  • A. N. K. Rosyidah, M. A. Maulyda, and I. Oktaviyanti, “Miskonsepsi Matematika Mahasiswa PGSD Pada Penyelesaian Operasi Hitung Bilangan Bulat,” J. Ilm. Kontekst., vol. 2, no. 01, pp. 15–21, 2020, doi: 10.46772/kontekstual.v2i01.244.
  • J. P. Purwaningrum and H. S. Bintoro, “Miskonsepsi matematika materi bilangan pada mahasiswa calon guru sekolah dasar,” in Prosiding Seminar Nasional MIPA 2018, 2018, no. November, pp. 173–180.
  • B. Susetyo, Prosedur Penyusunan dan Analisis Tes untuk Penilaian Hasil Belajar Bidang Kognitif. PT Refika Aditama, 2015.
  • Sugiyono, Metode Penelitian dan Pengembangan (Research and Development/ R&D). Bandung: Alfabeta, 2019.
  • A. Silalahi, “Development Research (Penelitian Pengembangan) dan Research & Development (Penelitian & Pengembangan) Dalam Bidang Pendidikan/Pembelajaran,” Res. Gate, no. July, pp. 1–13, 2018, doi: 10.13140/RG.2.2.13429.88803/1.
  • R. S. Setianingrum, S. Syamsuri, and Y. Setiani, “Analyzing students’ learning difficulties in algebra,” J. Mat. dan Pembelajaran, vol. 8, no. 1, pp. 19–34, Jun. 2020, doi:
  • M. Jamaris, Anak Berkebutuhan Khusus. Jakarta: Penerbit Ghalia Indonesia, 2018.
  • P. Scherer, K. Beswick, L. DeBlois, L. Healy, and E. M. Opitz, “Assistance of Students with Mathematical Learning Difficulties — How Can Research Support Practice ? — A Summary,” in Proceeding of the 13th International Congress on Mathematical Education, 2017, pp. 249–259, doi: 10.1007/978-3-319-62597-3.
  • M. F. Amir and B. H. Prasojo, Matematika Dasar. Sidoarjo: UMSIDA PRESS, 2016.
  • Tim Dosen, Bahan Ajar Matematika Dasar, Edisi Revi. Semarang: Universitas Negeri Semarang, 2012.
  • Y. Yahya, D. S. H. S, and A. S, Matematika Dasar Perguruan Tinggi, Kedua. Bogor: Tim Ghalia Indonesia, 2013.
  • H. Retnawati, Teori Respons Butir dan Penerapannya. Yogyakarta: Nuha Medika, 2014.
  • Sudaryono, “Implementasi Teori Responsi Butir pada THB Sekolah .pdf,” J. Pendidik. dan Kebud., vol. 17, no. 6, 2011.
  • C. DeMars, Item Response Theory: Understanding Statistics Measurement. New York: Oxford University Press Inc, 2010.
  • R. K. Hambleton and H. Swaminathan, Item Response Theory: Principles and Applications, vol. 9, no. 3. New York: Springer Science+Business Media, 1985.
  • Sudaryono, Teori Responsi Butir, Pertama. Yogyakarta: Graha Ilmu, 2013.
  • F. B. Baker and S.-H. Kim, The Basics of Item Response Theory Using R. USA: Springer International Publishing, 2017.
  • W. J. van der Linden, Handbook of item response theory, volume three applications. New York: CRC Press, 2016.
  • S. E. Embretson and S. P. Reise, Item Response Theory for Psychologists. London: Lawrence Erlbaum Associates, Publishers, 2000.
  • A. A. Bichi and R. Talib, “Item Response Theory: An Introduction to Latent Trait Models to Test and Item Development,” Int. J. Eval. Res. Educ., vol. 7, no. 2, p. 142, 2018, doi: 10.11591/ijere.v7i2.12900.
  • R. N. Amelia and Kriswantoro, “Implementasi Item Response Theory sebagai Basis Analisis Kualitas Butir Soal dan Kemampuan Kimia Siswa Kota Yogyakarta,” J. Kim. dan Pendidik. Kim., vol. 2, no. 1, pp. 1–12, 2017.
  • J. Lonnemann and M. Hasselhorn, “Assessing Mathematical Competence and Performance: Quality Characteristic, Approaches and Research Trends,” in International Handbook of Mathematical Learning Difficulties: From the Laboratory to the Classroom, A. Fritz, V. G. Haase, and P. Räsänen, Eds. New York: Springer International Publishing, 2019, pp. 633–651.
  • N. Zhao, “Mathematics learning performance and Mathematics learning difficulties in China,” Universiteit Gent, 2011.